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INSTRUCTOR: ARUNDHATHI KRISHNAN

8. Direct products

8.1. Definition of external direct products and examples.

Definition 8.1.1. The external direct product of groups G1, . . . , Gn, written as G1⊕· · ·⊕Gn,
is the set of all n-tuples in which the i-th component is an element of Gi, and the operation
is component-wise.

That is,

G1 ⊕ · · · ⊕Gn = {(g1, . . . , gn) | gi ∈ Gi}
with (g1, . . . , gn)(h1, . . . , hn) = (g1h1, . . . , gnhn).

It is implicit in the definition that the operation in each component i corresponds to the
binary operation of Gi. It is an easy exercise to show that the external direct product of
groups is itself a group.

Example 8.1.2.

(i)

U(5)⊕ U(3) = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2)}

with a sample product given by, say, (2, 2)(3, 1) = (1, 2) as 2 · 3 mod 5 = 1 and 2 · 1
mod 3 = 2.

(ii)

Z2 ⊕ Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

It turns out that this group, which is Abelian and of order 6 is isomorphic to Z6. To
see this, we show that Z2⊕Z3 is cyclic of order 6. Consider the element (1, 1) in the
direct product. Then

1(1, 1) = (1, 1) 2(1, 1) = (0, 2) 3(1, 1) = (1, 0)
4(1, 1) = (0, 1) 5(1, 1) = (1, 2) 6(1, 1) = (0, 0)

.

Hence Z2 ⊕ Z3 is cyclic of order 6 and is isomorphic to Z6.
(iii) Any group of order 4 is isomorphic to Z4 or Z2 ⊕ Z2. Let G = {e, a, b, ab}. If G

is cyclic, it is isomorphic to Z4. If not, by Lagrange’s theorem it holds that each
non-identity element has order 2, that is, | a | = | b | = | ab | = 2. Define the mapping
ϕ : G → Z2 ⊕ Z2 by ϕ(e) = (0, 0), ϕ(a) = (1, 0), ϕ(b) = (0, 1) and ϕ(ab) = (1, 1).
Then it is easily verified that ϕ is an isomorphism.

Note that combining this example with Theorem 7.2.11 gives a complete classifi-
cation of all groups of order 2p for p prime.
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8.2. Properties of external direct products.

Theorem 8.2.1. The order of an element in a direct product of a finite number of finite
groups is the least common multiple of the orders of the components of the element. That is,

| (g1, g2, . . . , gn) | = lcm(| g1 | , | g2 | , . . . , | gn |).

Proof. Let ei denote the identity of Gi for each i = 1, . . . , n, and s = lcm(| g1 | , . . . , | gn |)
and t = | (g1, . . . , gn) |. Then (g1, . . . , gn)s = (gs1, . . . , g

s
n) = (e1, . . . , en), so that t divides s by

Corollary 4.1.5.
On the other hand, as (gt1, . . . , g

t
n) = (g1, . . . , gn)t = (e1, . . . , en), we have gti = ei for each

i. By another application of Corollary 4.1.5, this gives that | gi | divides t for each i, hence s
– the least common multiple of all the | gi | – divides t.

Altogether we get that s = t as required. �

Example 8.2.2.

(i) We determine the number of elements in Z25 ⊕ Z5 of order 5. By Theorem 8.2.1, we
must count those elements (a, b) ∈ Z25 ⊕ Z5 such that 5 = lcm(| a | , | b |). Hence we
must have either | a | = 5 and | b | = 1 or 5, or | a | = 1 and | b | = 5.

In the first case, a may be 5, 10, 15 or 20 (this follows from Corollary 4.1.10). The
element b may be 0 (if its order is 1) or one of 1, 2, 3, 4 (if its order is 5). Hence there
are 4 choices of a and 5 for b with a total of 20 choices.

In the second case, a must be 0, whereas b may be one of 1, 2, 3, 4. Hence this case
gives 4 elements of order 5.

Altogether, there are 24 elements of order 5 in Z25 ⊕ Z5.
(ii) We determine the number of cyclic subgroups in Z100 ⊕ Z25 of order 10.

Let us, like in the previous example, enumerate the number of elements of order 10.
Using Theorem 8.2.1, this means we enumerate elements (a, b) with a ∈ Z100, b ∈ Z25

and lcm(| a | , | b |) = 10. This means that either | a | = 10 and | b | = 1 or 5; or | a | = 2
and | b | = 5. In the first case we get 4 choices for a (10, 30, 70, 90) and 5 for b (0 if
| b | = 1 and 5, 10, 15, 20 if | b | = 5. In the second case, we get one choice of a (a = 1)
and four choices for b. Hence we get a total of 24 elements of order 10. However, as
each cyclic subgroup of order 10 has 4 generators, this means that there is a total of
6 cyclic subgroups of order 10.

Theorem 8.2.3. Let G and H be finite cyclic groups. Then G ⊕ H is cyclic if and only if
|G | and |H | are relatively prime.

Proof. Suppose G⊕H is cyclic and m = |G | , n = |H |. Let d = gcd(m,n). Then |G⊕H | =
|G | |H | = mn. Suppose (a, b) is a generator of G ⊕H. Now, (a, b)

mn
d = ((am)

n
d , (bn)

m
d ) =

(eG, eH) as am = eG, b
n = eH , m and n being the orders of G and H respectively. Hence

mn = | (a, b) | divides mn
d which forces that d = 1.

On the other hand, suppose gcd(m,n) = 1 and a, b are generators of G and H respectively.
Then | (a, b) | = lcm(m,n) = mn = |G⊕H | (as gcd(m,n) = 1), so that (a, b) must be a
generator of G⊕H. �

The following corollary follows by induction applied to Theorem 8.2.3.

Corollary 8.2.4. An external direct product G1 ⊕ · · · ⊕Gn of finite cyclic groups is cyclic if
and only if |Gi | and |Gj | are relatively prime for all i 6= j.

Corollary 8.2.5. Let m = n1 · · ·nk. Then Zm is isomorphic to Zn1 ⊕ · · · ⊕ Znk
if and only

if gcd(ni, nj) = 1 for all i 6= j.
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The above results can be used to express the same group up to isomorphism in different
forms. For example,

Z2 ⊕ Z2 ⊕ Z15
∼= Z2 ⊕ Z2 ⊕ Z3 ⊕ Z5

∼= Z2 ⊕ Z6 ⊕ Z5
∼= Z2 ⊕ Z30.

We also have

Z2 ⊕ Z2 ⊕ Z3 ⊕ Z5
∼= Z2 ⊕ Z6 ⊕ Z5

∼= Z2 ⊕ Z3 ⊕ Z2 ⊕ Z5
∼= Z6 ⊕ Z10.

8.3. Internal Direct Products. Why do we use the term “external” for the direct products
we considered so far? We start with a finite number of groups and use them to arrive at a
larger group in such a way that properties of the larger group can be derived from them. For
instance, if G = H ⊕K, then |G | = |H | |K |; every element of G has the form (h, k) with
h ∈ H, k ∈ K; if |h | and | k | are finite, then | (h, k) | = lcm(|h | , | k |); if H and K are Abelian,
then so is G = H ⊕K; if H and K are cyclic and gcd(|H | , |K |) = 1, then G = H ⊕K is
also cyclic.

We would now like to reverse this process, that is, to start with a group G and break it
down into a product of subgroups so that properties of G can be obtained from properties of
the subgroups. It is possible to do this if the subgroups are normal.

Definition 8.3.1. A subgroup H of a group G is called a normal subgroup of G if aH = Ha
for all a ∈ G. This is denoted by H E G.

We will say a lot more about normal subgroups next week, but for the time being, we
consider how they play a part in internal direct products.

Proposition 8.3.2. Let H be a normal subgroup of a group G and K be any subgroup of G.
Then HK = {hk | h ∈ H, k ∈ K} is a subgroup of G.

Proof. The identity e = ee ∈ HK, so HK is non-empty. let a = h1k1, b = h2k2 ∈ HK. Then
ab−1 = (h1k1)(k

−1
2 h−12 ) = h1(k1k

−1
2 )h−12 = h1h

′(k1k
−1
2 ) for some h′ ∈ H as H is normal.

Hence ab−1 = (h1h
′)(k1k

−1
2 ) ∈ HK so that HK is a subgroup. �

Definition 8.3.3. A group G is said to be the internal direct product of H and K and we
write G = H ×K if H and K are normal subgroups of G and

G = HK, H ∩K = {e}.

Exercise 8.3.4. Let G = D6 = {r0, . . . , r5, s0, . . . , s5} the dihedral group of order 12. Let
H = {r0, r2, r4, s0, r2s0, r4s0} and K = {r0, r3}. Then verify that H and K are normal
subgroups of G, H ∩K = {r0} and HK = G.

Definition 8.3.5. Let H1, H2, . . . ,Hn be a finite collection of normal subgroups of G. We
say that G is the internal direct product of H1, H2, . . . ,Hn and write G = H1×H2×· · ·×Hn,
if

(i) G = H1H2 · · ·Hn = {h1h2 · · ·hn | hi ∈ Hi},
(ii) (H1H2 · · ·Hi) ∩Hi+1 = {e} for i = 1, 2, . . . , n− 1.

Theorem 8.3.6. If a group G is the internal direct product of a finite number of subgroups
H1, H2, . . . ,Hn, then G is isomorphic to the external direct product of H1, H2, . . . ,Hn.

Proof. We first show that hi ∈ Hi and hj ∈ Hj commute for i 6= j as

(hihjh
−1
i )h−1j ∈ Hjh

−1
j = Hj ,
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as Hj is normal and

hi(hjh
−1
i h−1j ) ∈ hiHi = Hi,

as Hi is normal.
Hence hihjh

−1
i h−1j ∈ Hi ∩Hj = {e}, so that hihj = hjhi.

Next, we show that each element of G has a unique representation in the form h1h2 · · ·hn
with hi ∈ Hi. Indeed, suppose h1h2 · · ·hn = h′1h

′
2 · · ·h′n with hi, h

′
i ∈ Hi for each i. Then

h′nh
−1
n = (h′n−1)

−1 · · · (h′1)−1h1 · · ·hn−1. By the fact that hi and hj commute for i 6= j, we get

h′nh
−1
n = (h′1)

−1h1(h
′
2)
−1h2 · · · (h′n−1)−1hn−1, so that h′nh

−1
n ∈ Hn ∩H1H2 · · ·Hn−1 = {e} and

h′n = hn. We can now cancel hn and h′n from the two sides of h1 · · ·hn = h′1 · · ·h′n and repeat
the same process until we arrive at hi = h′i for all i.

Now that we have established the uniqueness of the representation of an element g in G as
a product of elements of Hi we can define the following map ϕ : G → H1 ⊕ H2 ⊕ · · · ⊕ Hn

without ambiguity:
ϕ(h1h2 · · ·hn) = (h1, h2, · · · , hn).

Then ϕ is an isomorphism (verify this!). �

We will return to some consequences of this theorem next week.
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