
PMATH 336: INTRODUCTION TO GROUP THEORY WITH

APPLICATIONS

NOTES FOR WEEK 10

INSTRUCTOR: ARUNDHATHI KRISHNAN

11. Fundamental Theorem of Finite Abelian Groups

The goal of this lecture is to establish the fundamental theorem for finite Abelian groups.
This is a result that describes the structure of all Abelian groups of finite order, up to iso-
morphism. We first state the theorem.

Theorem 11.0.1 (Fundamental Theorem). Every finite Abelian group is a direct product of
cyclic groups of prime-power order. Moreover, the number of terms in the direct product and
the orders of the cyclic groups are uniquely determined by the group.

The above theorem implies that for any finite Abelian group G, we have the following:

G ∼= Zp
n1
1
⊕ · · · ⊕ Zp

nk
k
,

where the pi-s are not necessarily distinct and the prime-powers pn1
1 , . . . , pnk

k are uniquely
determined by G. Expressing G as such a direct product is known as determining the iso-
morphism classes of G.

We delay the proof of the fundamental theorem for the time being, and consider some
applications first.

11.1. The isomorphism classes of Abelian groups. We will use the fundamental theorem
to construct Abelian groups of any order. First, suppose the group has order pk where p is a
prime and k is a positive integer. Suppose k can be written as a sum of positive integers:

k = n1 + · · ·nt.

The set of positive integers {n1, . . . , nt} is called a partition of k, and each partition gives
rise to the following Abelian group of order pk:

Zpn1 ⊕ · · · ⊕ Zpnt ,

Further, the fundamental theorem gives that each partition yields a distinct isomorphism
class of finite Abelian groups. Let us consider some concrete constructions for k = 1, 2, 3 and
4.
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Order of G k Partitions of k Possible direct products for G
p 1 1 Zp

p2 2 2 Zp2

1 + 1 Zp ⊕ Zp

p3 3 3 Zp3

2 + 1 Zp2 ⊕ Zp

1 + 1 + 1 Zp ⊕ Zp ⊕ Zp

p4 4 4 Zp4

3 + 1 Zp3 ⊕ Zp

2 + 2 Zp2 ⊕ Zp2

2 + 1 + 1 Zp2 ⊕ Zp ⊕ Zp

1 + 1 + 1 + 1 Zp ⊕ Zp ⊕ Zp ⊕ Zp

The fundamental theorem makes it remarkably easy to classify all Abelian groups of a
given order. The non-Abelian case is much harder, even for small orders. Now that we have
described how to use partitions to construct Abelian groups of prime-power order, we move
to the general case of any finite order, say n. We first write the prime-power decomposition
of n, say

n = pn1
1 · · · p

nk
k .

Then we form all the Abelian groups of order pn1 , . . . , pnk
k as outlined above using partitions.

Finally, we put them together to form all possible external direct products of these groups.
Let’s try an example. Say |G | = 7938 = 2 × 34 × 72. The prime-power 2 gives us Z2, 34

gives us one of Z81, Z27⊕Z3, Z9⊕Z9, Z9⊕Z3⊕Z3 or Z3⊕Z3⊕Z3⊕Z3, and the prime-power
72 gives either Z49 or Z7 ⊕ Z7. So G must be (isomorphic to) one of the following:

Z2 ⊕ Z81 ⊕ Z49

Z2 ⊕ Z81 ⊕ Z7 ⊕ Z7

Z2 ⊕ Z27 ⊕ Z3 ⊕ Z49

Z2 ⊕ Z27 ⊕ Z3 ⊕ Z7 ⊕ Z7

Z2 ⊕ Z9 ⊕ Z9 ⊕ Z49

Z2 ⊕ Z9 ⊕ Z9 ⊕ Z7 ⊕ Z7

Z2 ⊕ Z9 ⊕ Z3 ⊕ Z3 ⊕ Z49

Z2 ⊕ Z9 ⊕ Z3 ⊕ Z3 ⊕ Z7 ⊕ Z7

Z2 ⊕ Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3 ⊕ Z49

Z2 ⊕ Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3 ⊕ Z7 ⊕ Z7

In practice, given a group of order 7938, how do we know which of the following ten options
it is equal to? One could, for instance, compare the number of elements of given orders to
narrow it down. For instance, if G has an element of order 49, it must be the first, third, fifth,
seventh or ninth option above. If we know that G has an element of order 81, then it must
be isomorphic to the first or second option.

How do we express a finite Abelian group G as an internal direct product? We will see the
following construction in the proof of the fundamental theorem. Suppose we have a group of
order 2n. Pick an element a1 of maximum order, say 2r. Then 〈a1〉 is one of the factors in the
internal direct product. If G 6= 〈a1〉, choose an element a2 of maximum order 2s such that

s ≤ n − r and none of a2, a
2
2, a

4
2, . . . , a

2s−1

2 is in 〈a1〉. Then 〈a2〉 is another direct factor. If

G 6= 〈a1〉 × 〈a2〉 = {ai1a
j
2 | 0 ≤ i < 2r, 0 ≤ j < 2s}, then choose a3 of maximum order 2t such
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that t ≤ n− r − s and none of a3, a
2
3, . . . , a

2t−1

3 is in 〈a1〉 × 〈a2〉. Then 〈a3〉 is another direct
factor. We continue in this manner until our direct product has the same order as G.

In general, for a prime p and a group of order pn, we do the following:

(i) Pick an element a1 of maximum order, say pr. Then 〈a1〉 is one of the factors in the
internal direct product.

(ii) If G 6= 〈a1〉, choose an element a2 of maximum order ps such that s ≤ n− r and none

of a2, a
p
2, a

p2

2 , . . . , ap
s−1

2 is in 〈a1〉. Then 〈a2〉 is another direct factor.
(iii) Continue in this manner until the direct product has the same order as G.

If the order of G is n = pn1
1 · · · p

nk
k , then we build the pieces for each prime and put them

together as an internal direct product.

Example 11.1.1. Let G = {1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 64} under mul-
tiplication modulo 65. G has order 16 = 24, hence we know it is isomorphic to one of

Z16

Z8 ⊕ Z2

Z4 ⊕ Z4

Z4 ⊕ Z2 ⊕ Z2

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2

To decide which of the five options G must be isomorphic to, we list the orders of its
elements:

Element 1 8 12 14 18 21 27 31 34 38 44 47 51 53 57 64
order 1 4 4 2 4 4 4 4 4 4 4 4 2 4 4 2

As the only possible orders are 1, 2 and 4, we can rule out the first two and the last options.
It is not hard to compute that Z4 ⊕ Z2 ⊕ Z2 has only 8 elements of order 4, whereas G has
12. So G must be isomorphic by elimination to Z4 ⊕ Z4.

We also show how to express G as an internal direct product. Choose 8, say, which has the
maximum order 4 = 22, so 〈8〉 is one factor. Next, choose some element a which has maximal
order and a, a2 /∈ 〈8〉 = {8, 64, 57, 1}, say a = 12. Then G = 〈8〉 × 〈12〉.

It is of course not always practical to compute the order of every element of a given group.
Sometimes, it may be enough to find the order of just a few elements.

Example 11.1.2. Let

G = {1, 8, 17, 19, 26, 28, 37, 44, 46, 53, 62, 64, 71, 73, 82, 89, 91, 98, 107, 109, 116, 118, 127, 134},
under multiplication modulo 135.

As |G | = 24 = 23 × 3, G must be isomorphic to one of the following:

Z8 ⊕ Z3
∼= Z24

Z4 ⊕ Z2 ⊕ Z3
∼= Z12 ⊕ Z2

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3
∼= Z6 ⊕ Z2 ⊕ Z2

The element 8 has order 12, so the last option is ruled out. The elements 109 and 134 both
have order 2, so the group cannot be cyclic (as it has two subgroups of order 2). Hence G
must be isomorphic to Z12 ⊕ Z2. So G can be expressed as G = 〈8〉 × 〈134〉.

To express G as an internal direct product using our algorithm, we see that as G ∼= Z12⊕Z2,
the maximum order an element can have of power 2 is 4, say for instance, 28. Hence 〈28〉 is
one factor, and we can choose an element of order 2, say 134 which is not in {1, 28, 109, 82}.
Then 〈28〉 × 〈134〉 takes care of the powers of 2. The element 46 is of order 3, so we get
G = 〈28〉 × 〈134〉 × 〈46〉. This is isomorphic to the direct product we have already obtained.
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The fundamental theorem gives us the following corollary, which is a converse of Lagrange’s
theorem for finite Abelian groups.

Corollary 11.1.3. If m divides the order of a finite Abelian group G, then G has a subgroup
of order m.

It is illustrative to verify this with an example, and convince yourself that you can indeed
write a proof in the general case!

Example 11.1.4. Suppose G is an Abelian group of order 72 = 23 × 32. We will find a
subgroup of G of order 12. By the fundamental theorem G must be isomorphic to one of the
following six groups:

Z8 ⊕ Z9
∼= Z72 Z8 ⊕ Z3 ⊕ Z3

∼= Z24 ⊕ Z3

Z4 ⊕ Z2 ⊕ Z9
∼= Z36 ⊕ Z2 Z4 ⊕ Z2 ⊕ Z3 ⊕ Z3

∼= Z12 ⊕ Z6

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z9
∼= Z18 ⊕ Z2 ⊕ Z2 Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3

∼= Z6 ⊕ Z6 ⊕ Z2

It is clear that one can find a subgroup of order 12 in the first four cases, since there is a
cyclic group whose order is a multiple of 12 sitting in the direct product (Z72,Z24,Z36,Z12).
Let us try to find subgroups in the last two cases which have order 12. Clearly, 〈6〉 ⊕Z2⊕Z2

is a subgroup of order 12 in Z18 ⊕ Z2 ⊕ Z2 and Z6 ⊕ {0} ⊕ Z2 has order 12 in Z6 ⊕ Z6 ⊕ Z2.

11.2. Proof of the fundamental theorem. We will prove the fundamental theorem via a
series of lemmas.

Lemma 11.2.1. Let G be a finite Abelian group of order pnm, where p is a prime that does
not divide m. Then G = H ×K, where H = {x ∈ G | xpn = e} and K = {x ∈ G | xm = e}.
Moreover, |H | = pn.

Proof. Any set of the form {x ∈ G | xl = e} for some integer l is a subgroup, as el = e and
xl = yl = e implies that (xy−1)l = xly−l = e as G is Abelian. Hence, H and K are subgroups.

We will now prove that G = HK and H ∩K = {e}. The latter follows easily as x ∈ H ∩K
implies that xp

n
= e = xm, so that |x | divides m and pn. But as p is prime and does not

divide m, it must hold that |x | = 1 and x = e.
Let x ∈ G. As gcd(m, pn) = 1, there exist s, t ∈ Z such that sm + tpn = 1, so that

x = xsm+tpn = xsmxtp
n
. Now, xsm ∈ H as (xsm)p

n
= xs|G | = e; similarly, xtp

n ∈ K, so
x ∈ HK.

Finally, pnm = |HK | = |H | |K |. If p divides |K |, then K has an element of order p
by Cauchy’s Theorem (9.3.4). Hence p divides m, a contradiction. So it must hold that
|H | = pn.

�

Repeated applications of Lemma 11.2.1 give the following. Let G be an Abelian group with

|G | = pn1
1 · · · p

nk
k , where the pi-s are distinct primes. Then taking G(pi) = {x ∈ G | xp

ni
i = e},

G = G(p1)× · · · ×G(pk),

and |G(pi) | = pni
i .

We will now further decompose each G(pi).

Lemma 11.2.2. Let G be an Abelian group of prime-power order and let a be an element of
maximum order in G. Then G can be written in the form 〈a〉 ×K for some subgroup K.
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Proof. Let |G | = pn. We will prove the result by induction on n. If n = 1, then |G | = p and
| a | = p, so that G = 〈a〉 × 〈e〉.

Next, suppose that the statement is true for all Abelian groups of order pk, where k < n.
Choose an element a of maximum order pm. Then xp

m
= e for all x ∈ G (as the order of any

element must be a power of p and pm is the highest among such orders). If G = 〈a〉, we are
done.

Otherwise, choose b of smallest order such that b /∈ 〈a〉. We claim that 〈a〉 ∩ 〈b〉 = {e}.
Since | bp | = | b |

p < | b |, we know that bp ∈ 〈a〉 . Suppose bp = ai, then e = bp
m

= (bp)p
m−1

=

(ai)p
m−1, so that

∣∣ ai ∣∣ ≤ pm−1. Hence ai is not a generator of 〈a〉, so that gcd(pm, i) 6= 1.

This implies that p divides i, so that i = pj for some integer j. Hence bp = ai = apj . Let
c = a−jb. Then c /∈ 〈a〉, and cp = a−jpbp = e. We have thus found an element c of order p
with c /∈ 〈a〉, so by the way we have chosen b, it must hold that | b | = p.

Now, suppose x ∈ 〈a〉 ∩ 〈b〉. If x 6= e, then x generates 〈b〉 so that b ∈ 〈a〉, a contradiction.
Hence the intersection is {e}.

Now, let G := G�〈b〉 and write any coset x〈b〉 as x. If | a | < | a | = pm, then ap
m−1

= e,

hence ap
m−1 ∈ 〈a〉 ∩ 〈b〉 = {e}. This is a contradiction as | a | = pm, hence | a | = pm. That is,

a is an element of maximum order in |G |.
As

∣∣G ∣∣ < |G |, we can use the induction hypothesis to get

G = 〈a〉 ×K,

for some subgroup K of G.
Let K = {x ∈ G | x ∈ K}. We will show that G = 〈a〉 ×K.
Let x ∈ 〈a〉 ∩K, then x ∈ 〈a〉 ∩K = {e} = {〈b〉}. Hence x ∈ 〈b〉, but as x ∈ 〈a〉, we have

x = e.
Now, | 〈a〉K | = | 〈a〉 | |K | = | a |

∣∣K ∣∣ p =
∣∣G ∣∣ p = |G | so that indeed G = 〈a〉 ×K. �

Lemma 11.2.2 and induction gives the following lemma.

Lemma 11.2.3. A finite Abelian group of prime-power order is an internal direct product of
cyclic groups.

Hence altogether we have proved that

G = G(p1)× · · · ×G(pn),

and that each G(pi) is an internal direct product of cyclic groups. Hence G is an internal
direct product of cyclic groups of prime-power order. We are left to show the uniqueness of
the direct product obtained above.

The groups G(pi) are uniquely determined by G as they contain those elements of G whose
orders are powers of pi. We are left to prove that there is only one way (up to isomorphism)
to write each G(pi) as an internal direct product of cyclic subgroups.

Lemma 11.2.4. Suppose that G is a finite Abelian group of prime-power order. If G =
H1×· · ·×Hm and G = K1×· · ·×Kn, where the Hi-s and Ki-s are nontrivial cyclic subgroups
with |H1 | ≥ · · · ≥ |Hm | and |K1 | ≥ · · · ≥ |Kn |, then m = n and |Hi | = |Ki | for each i.

Proof. The proof is by induction on |G |. If |G | = p, the result is true. Suppose the statement
is true for all Abelian groups of order less than |G |.

For any group L let Lp = {xp | x ∈ L}. Then Lp is a subgroup of L (verify this). Further,
if p divides the order of L, then by Cauchy’s theorem, L has an element of order p, say a.
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Hence a 6= e, ap = e, so that the map a 7→ ap is not injective, and Lp is a proper subgroup of
L.

Now Gp = Hp
1 × · · · × Hp

m′ and Gp = Kp
1 × · · · × Kp

n′ , where m′ is the largest integer i
such that |Hi | > p and n′ is the largest integer j such that |Kj | > p (this is to ensure
that the direct product decomposition of Gp does not have trivial factors). By the induction
hypothesis, since |Gp | < |G |, we have m′ = n′ and |Hp

i | = |K
p
i | for all i = 1, . . . ,m′. Note

that |Hi | = |Hp
i | p (Why? Use the fact that Hi is cyclic and that the map Hi 3 a→ ap has

kernel {x ∈ Hi | xp = e}). Hence it follows that |Hi | = |Ki | for all i = 1, . . . ,m′. For the
remaining i, |Hi | = p = |Ki |.

Finally, since |Hi | · · · |H ′m | pm−m
′

= |G | = |Ki | · · · |K ′n | pn−n
′
, we have m−m′ = n− n′,

so that m = n. �

We have now proved the fundamental theorem, and we restate it.

Theorem. Every finite Abelian group is a direct product of cyclic groups of prime-power
order. Hence G is isomorphic to Zp

n1
1
⊕· · ·⊕Zp

nk
k

, where the pi-s are not necessarily distinct,

and the prime-powers pn1
1 , . . . , pnk

k are uniquely determined by G.
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