PMATH 336: INTRODUCTION TO GROUP THEORY WITH
APPLICATIONS
NOTES FOR WEEK 6

INSTRUCTOR: ARUNDHATHI KRISHNAN

7. COSETS AND LAGRANGE’S THEOREM
7.1. Cosets.

Definition 7.1.1. Let G be a group and H be a non-empty subset of G. For any a € G,
the set {ah | h € H} is denoted by aH. Similarly, Ha denotes the set {ha | h € H} and
aHa™! the set {aha~! | h € H}. If H is a subgroup of G, aH is called the left coset of H in
G containing a, and Ha is called the right coset of H in G containing a.

Example 7.1.2.
(i) Let G = S3,H = {(1),(1,3)}. The left cosets of H in Sz are:

(WH = H
(1,2)H = {(1,2)(1), (1, )(1,3)} ={(1,2),(1,3,2)}
(1,3,2)H = {(1,3,2),(1,3,2)(1,3)} = {(1,3,2),(1,2)}
(1,3)H = {(1,3), (1, )(1 3)r={1,3),)}=H
(2,3)H ={(2,3),(2,3)(1,3)} = {(2,3),(1,2,3)}
(1,2,3)H ={(1,2,3),(1,2,3)(1,3)} ={(1,2,3),(2,3) }

(ii) Let G = Zg and H = {0, 3,6}. The cosets of H in Zg are:
0+ H=1{0,36=3+H=6+H
1+ H={1,4,7}=44+H=7+H
24+ H=1{2,5,8} =5+ H=8+H.

(iii) Let G = D4y and H = {rg,r2}. The cosets of H in Dy are:

roH = {ro,re} = H

riH = {ri,rire} = {ri,rs}

roH = {rqo,rors} = {ro, 70} = H
rsH = {r3,rsro} = {rs,r1}

soH = {so, sor2} = {s0, s2}

s1H = {s1,s11m2} = {51, 83}

soH = {s2, s9r2} = {52, 50}

ssH = {s3,s3r2} = {s3,51}

In the example above, it is clear that cosets need not be subgroups, and that cosets of a

subgroup H corresponding to different elements a,b € GG can be the same.
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Lemma 7.1.3. Let H be a subgroup of G and let a,b € G. Then

(i) a € aH.
(ii) aH = H <= a€ H.

(iii) (ab)H = a(bH) and H(ab) = (Ha)b.

(iv) aH =bH <= a € bH.
(v) aH =bH or aHNbH = ().

(vi) aH = bH <= a 'bec H.

(vii) |aH | = |bH |.

(viii) aH = Ha <= H =aHa ',

(iz) aH is a subgroup of G if and only if a € H.

Proof. (i) As H is a subgroup, e € H and so a = ae € aH.

(ii) a € H implies that ah € H for each h € H, so aH C H. On the other hand, a € H
implies that a=! € H, so h = a(a™'h) € aH for all h € H, and hence H C aH.
Conversely, suppose that aH = H. Then a = ae € aH = H.

(iii) By associativity, (ab)h = a(bh) and h(ab) = (ha)b for all h € H. Hence the given
equalities of sets hold.

(iv) Suppose aH = bH. Then a = ae € aH = bH. Conversely, suppose a € bH. Then
a = bh; for some hy € H and aH = (bh1)H = b(h1H) = bH by parts (ii) and (iii).

(v) If c € aH NbH, then by part (iv), aH = cH = bH.

(vi) aH = bH if and only if H = a~'bH, which by part (ii) holds if and only a='b € H.

(vii) The map ah — bh from aH to bH is one-to-one and onto, and hence the two sets
have the same cardinality.
(viii) aH = Ha if and only if aHa™ ! = Haa™! = H.

(ix) If a € H, then by part (ii), aH = H, which is of course a subgroup of G. Conversely,
suppose aH is a subgroup. Then e € aH so that eH NaH # (. By part (v)
aH =eH = H, so a € H by part (ii).

O

We note that properties (i), (v) and (vii) of Lemma imply that a group G can be
partitioned into distinct cosets of equal cardinality, and indeed the relation a ~ b if and only if
aH = bH is an equivalence relation that partitions G into equivalence classes given by distinct
cosets. The subgroup H is often thus chosen in such a way as to partition the group in some
desirable way. For example, consider H = SL(2,R) < G = GL(2,R) and its cosets. For any
matrix A € GL(2,R), the coset AH consists of all matrices with the same determinant as A
(verify this!).

7.2. Lagrange’s Theorem.

Theorem 7.2.1. If G is a finite group and H is a subgroup of G, then | H | divides | G |. The
number of distinct left (right) cosets of H in G is f%'
Proof. Let a1H,...,a,H denote the distinct left cosets of H in GG. Then for each a € G,
aH = a;H for some i, and a € aH = a;H. Thus each a € G belongs to a coset a;H
so that G = a1H U ... Ua,H. This union is disjoint by part (v) of Lemma hence
|G|=]a1H|+ -+ |a.H|=r|H| (by part (vii) of Lemma |[7.1.3). Hence | H | divides |G |
and further, % is equal to the number of left cosets of H in G.

O
Definition 7.2.2. The index of a subgroup H in G is the number of distinct left cosets of H
in G, denoted by |G : H|.
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A straightforward corollary of Lagrange’s Theorem is the following.
Corollary 7.2.3. If G is a finite group and H is a subgroup of G, then |G : H | = %
Corollary 7.2.4. In a finite group, the order of each element of the group divides the order
of the group.

Proof. Let G be a finite group and a € G. Then (a), the cyclic subgroup generated by a, is a
subgroup of G, hence |a| = | (a)| divides the order of G. O

Corollary 7.2.5. A group of prime order is cyclic.

Proof. Let G have prime order, say p and e # a € G. Then by Lagrange’s Theorem [7.2.1]
| (a) | divides | G| = p, hence |{(a)| = p or 1. As a # e, (a) must have order p, which implies
that it is the whole group G. U

Corollary 7.2.6. Let G be a finite group and let a € G. Then oGl = e.

Proof. By Corollary there exists n € N such that n|a| = |G|. Hence al¢l = g"lel =
e. O

Corollary 7.2.7 (Fermat’s Little Theorem). For every integer a and every prime p, aP
mod p =a mod p.

Proof. There exist integers m and r with 0 < r < p such that a = pm + r, that is, a
mod p = r. So it suffices to prove that r» mod p = r. If » = 0, the result is true. Assume
that r € {1,2,...,p—1} = U(p). Then by Corollary rP~1 mod p = 1. (We also showed
this (Euler’s Theorem) in Question 1 of Assignment 2.) Hence r? mod p = . O
Remark 7.2.8. The converse of Lagrange’s theorem is false. Consider A4 the alternating
group of degree 4. Then | A4 | = 45! = 12. But A4 has no subgroups of order 6.

To see this, an easy computation gives that Sy has 8 elements of order 3 and as they are all
3-cycles, they are even permutations and belong to A4. Now, suppose that A4 has a subgroup
of order 6. Let a be an element of order 3 and suppose a ¢ H. Then Ay = H UaH so that
a’> € H or a®> € aH. If a®> € H, then a = a* € H, a contradiction. On the other hand,
a’? € aH implies that a® = ah for some h € H, so a € H, a contradiction So it must be true
that a € H for every a with order 3. But this implies that 8 elements belong to a subgroup
of order 6, which is absurd.

This shows that unlike in a cyclic group, a finite group of order n need not have a subgroup
of order k if k divides n (compare with Theorem 4.2.1).

Theorem 7.2.9. For two finite subgroups H and K of a group, let HK = {hk | h € H,k €

HI|| K
K}. Then |HK | = 2LE]

Proof. On first glance, the set HK has | H || K | products, but they may not all be distinct.
That is, we may have hk = h'k’ with h # 1 € H and k # k' € K.

For each t € HN K, hk = h(tt 1)k = (ht)(t 'k) € HK as ht € H and t~'k € K. Hence
each group element in HK is represented by at least | H N K | products in HK. On the other
hand, suppose hk = h'k’. Then W 'h = k'k' =t € HN K, so h = Wt and k = k't™!
with t € H N K. Thus each element in HK is represented by exactly | H N K | products, and

_ lH||K]|
|HK | =l O

Example 7.2.10. A group of order 75 can have at most one subgroup of order 25. Suppose
H, K are subgroups of order 25. Then as HNK is a subgroup of H (or K), | H N K | divides the
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order of H (or K) so that | H N K | is 1,5, or 25. The choices 1 and 5 lead to | HK | = ||Iér|j|§||
equal to 625 and 125 respectively which gives a contradiction as the cardinality of HK must
be less than or equal to the order of the group. Hence we must have | H N K | = 25, so that

HNK=H=K.

Theorem 7.2.11 (Classification of Groups of order 2p). Let G be a group of order 2p, where
p is a prime greater than 2. Then G is isomorphic to Zso, or D,.

Proof. If G has an element a of order 2p, then G 2 (a), that is, G is cyclic of order 2p and is
isomorphic to Zg, by Example 6.1.3 (iii).

If there is no element of order 2p in G, then by Corollary any non-identity element
of G must have order 2 or p. If every non-identity element of G has order 2, then G is
Abelian (why?). In this case, the set {e,a,b,ab} is closed and contains all inverses, hence
it is a subgroup of order 4 of GG, which is a contradiction as by Lagrange’s theorem, any
subgroup of G must have order 2 or p. Hence, some element a € G must have order p. Let
b€ G\ (a). Then |b| = 2 or p. By another application of Lagrange’s theorem, | (a) N () |
divides | (a) | = p and (a) # (b) implies that |(a) N (b)| = 1. If |b| = p, then by Theorem
| (a)(b) | = ? = p? > 2p = |G|, as p > 2. This is impossible, hence it must hold
that |b| = 2. Thus, altogether, we have shown that any element outside (a) must have order
2. Further, note that e, a,a?,...,a?" " and b, ab, a®b,...,aP b are all distinct elements of G.
Since there are 2p such elements and | G| = 2p, they must be all the elements of G.

Consider the element ab. As it does not belong to (a), it must have order 2. Hence
ab = (ab)~! = ba~!. This relation will determine the multiplication table of G.

Recall the dihedral group D), of order 2p for p > 3. Choose a rotation of order p (for example
r1) and any reflection (say, s2). Then every element of Dy, can be written as products of
these two elements (verify this!). The set {ri,s2} is said to generate the group G. Further,
r189 = s3 and 327'1_1 = 59Tp—1 = 52_p+1 mod p = S3 S0 that r1so = 827“1_1.

In G (and D,), the multiplication table is completely determined by the relation ab = ba~?
as we have the following:

akal — akJrl mod p7 ak(alb) — ak+l mod pb’
(alb)ak — ba*lak _ bakfl mod p _ alfk mod p67 (akb)(alb) _ CLkaafl — akfl mod p
Hence G = D, via the isomorphism ¢(a%") = rish, ¢=0,...,p— 1 and r =0, 1. d

Corollary 7.2.12. The group Ss is isomorphic to Ds.

Proof. The group Ss is of order 6 = 2(3) and it is not cyclic. Hence it must be isomorphic to
D3 by Theorem O

7.3. An application to permutation groups.

Definition 7.3.1. Let G be a group of permutations of a set S. For each i € S, let stabg (i) =
{¢ € G| (i) = i}. The set stabg(i) is called the stabilizer of i in G.

Exercise 7.3.2. stabg(i) is a subgroup of G.

Definition 7.3.3. Let G be a group of permutations of a set S. For each i € S, let orbg (i) =
{¢(i) | ¢ € G}. The set orbg(i) is a subset of S called the orbit of ¢ under G.

Example 7.3.4. Let the group G be given by
G=1{(1),(1,3,2)(4,6,5)(7,8),(1,3,2)(4,6,5),(1,2,3)(4,5,6), (1,2,3)(4,5,6)(7,8),(7,8)}.
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Then

orbg(1l) ={1,3,2} stabg(l) ={(1),(7,8)}

orbg(2) ={2,1,3} stabg(2) ={(1),(7,8)}

orbg(3) ={3,2,1} stabg(3) ={(1),(7,8)}

orbg(4) ={4,6,5} stabg(4) ={(1),(7,8)}

orbg(5) = {5,4,6} stabg(5) ={(1),(7,8)}

orbg(6) = {6,5,4} stabg(6) = {(1),(7,8)}

orbg(7) ={7,8}  stabg(7) ={(1),(1,3,2)(4,6,5),(1,2,3)(4,5,6)}

orbg(8) ={8,7}  stabg(8) ={(1),(1,3,2)(4,6,5),(1,2,3)(4,5,6)}
Theorem 7.3.5 (Orbit Stabilizer). Let G be a finite group of permutations of a set S. Then

foranyi € S, |G| =|orbg(i)||stabg(i)|.

Proof. We know by Lagrange’s theorem that ‘St;b% gives the number of left cosets of

stabg (i) in G. We will give a one-to-one correspondence between the left cosets of stabg(7)
and the elements in the orbit of <.

Define T'(¢stabg(i)) = ¢(i). To see that T is well-defined, note that if astabg(i) =
Bstabg (i), then a1 € stabg(i) so that (a=13)(i) = i. This gives that a(i) = 3(i), so T is
well defined.

Next we show that T is one-to-one. Suppose (i) = 3(i), then (a~18)(i) =i, so a1 €
stabg (7). This implies that astabg (i) = [stabg(i) establishing that T is one-to-one.

Finally we show that 7" is onto. Let j € orbg(i), then j = «(i) for some o € G. Hence
j = a(i) = T(astabg()).

Altogether, we have shown that there exists a bijection between the left cosets of stabg (i)

and the orbit of ¢, hence % = |orbg(i) |. O

7.4. Rotation group of a cube.

Example 7.4.1. Let G be the rotation group of a cube. What is |G |7 We can view G as a
group of permutations on the set {1,2,3,4,5,6} as any rotation must carry a face of the cube
to a face of the cube.

Let us fix the face corresponding to 1, say and use the Orbit-Stabilizer theorem. There
exists a rotation that carries face 1 to each of the faces 1,2,3,4,5,6, hence |orbg(i)| = 6.
The rotations that fix face 1 are given by rotations of 0, 5, 7, 37“ about the line perpendicular
to face 1 passing through the center of the cube. Hence |stabg(i)| = 4. Altogether, |G| =
|orbg(1) || stabg(1) | =6 x 4 = 24.

Theorem 7.4.2. The group of rotations of a cube is isomorphic to Sy.

Proof. We proved in the example above that |G| = 24. We will show that G maps to a
subgroup of Sy, hence must be equal to Sy as it has the same cardinality.

To each rotation of the cube, we associate an element of Sy. In particular, a cube has
4 diagonals and the rotation group induces a group of permutations on the four diagonals.
Labelling the diagonals a, b, ¢, d, we see that there is a § rotation that yields the permutation
a=(1,2,3,4) (see figure[l| below) and a § rotation that yields 5 = (1,4,2, 3).

Hence the group of permutations of the diagonals induced by the rotations of the cube
contains the 8 element subgroup {e, o, a?, a3, 32, B%a, B%a?, f2a3} and also the element af3
which has order 3. Hence the order of the group of permutations of the diagonals induced by
the rotations of the cube is a multiple of 8 and 3, hence must be 24. Hence G = 5. g
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FicURE 1. The rotation yielding the permutation «
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